

I TESSUTI INTELLIGENTI E SENSORIZZATI: PROSPETTIVE E APPLICAZIONI

Le esperienze in atto del WoWS! Lab e del Lab. di Domotica della Fondazione Politecnico di Milano

Ing. Giuseppe Andreoni

Lunedì 11 ottobre 2004

Camera di Commercio di Como

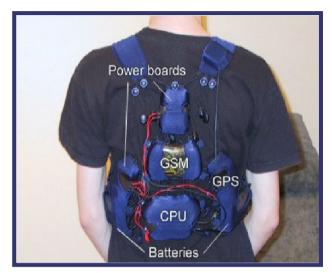
Wearable computing

Definizione:

La capacità di elaborare informazioni attraverso strumenti indossabili che permettano l'interazione con l'utente.

(Steve Mann)

Sono questi Wearable computing?


il primo PC portatile

il primo modello di auricolare

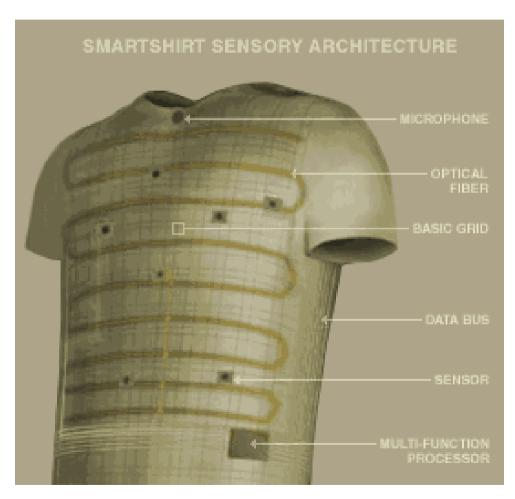
Lo stato dell'arte nel mondo

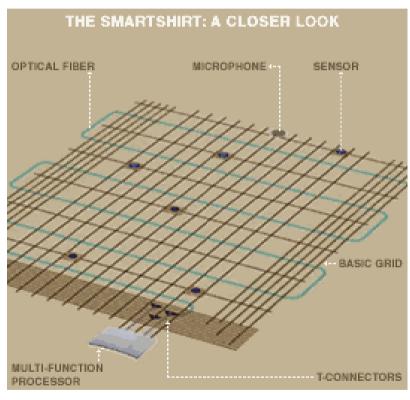
La ricerca nel mondo

ORIGINI DEL CONCETTO DI INDUMENTO "INTELLIGENTE" PER RILEVAZIONI BIOLOGICHE

- M.I.T.
- DARPA & Georgia Institute of Technology

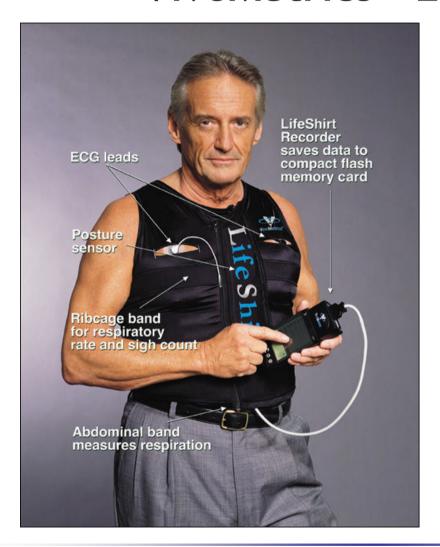
(Defense Advance Research Projects Agency)





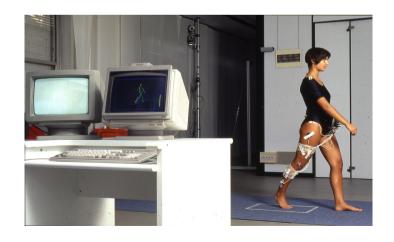
La ricerca nel mondo

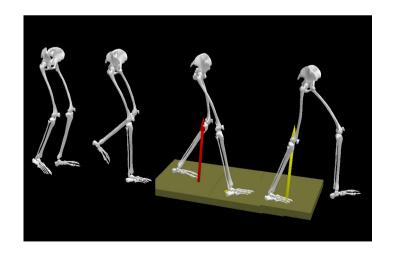
Sensatex - SmartShirt: architecture



La ricerca nel mondo

VivoMetrics - Life Shirt

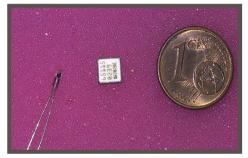


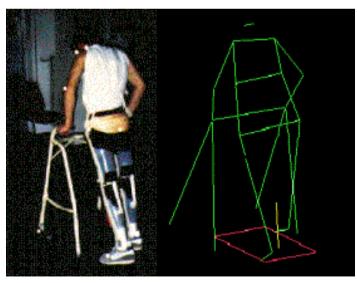

La ricerca al Politecnico di Milano

Il Lab. di Tecnologie Biomediche

porta all'interno dell'Ateneo un grande bagaglio di conoscenze, tecnologie e rapporti con Istituzione nazionali ed internazionali e si pone come obiettivo quello di rinforzare ulteriormente le ricerche e lo sviluppo di metodi e tecnologie nel settore biomedico

7

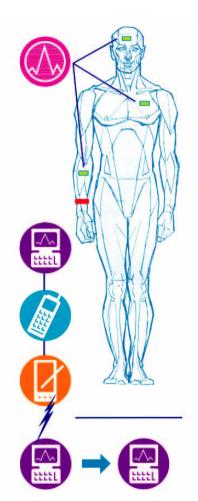

La ricerca al Politecnico di Milano



Il Lab. di Tecnologie Biomediche

una rinnovata tradizione di ricerca di eccellenza in:

- → Analisi multifattoriale del movimento
- → Radioterapia e Chirurgia Assistita dal PC
- → Metodologie innovative per la Respirazione
- → Neuroinformatica
- → Ergonomia e Postura
- Sport
- → Riabilitazione e ausili
- → Wearable Sensors

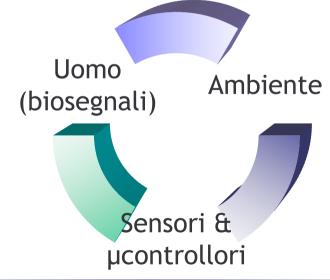

Il WoWS! Lab

Wireless embedded Or integrates Wearable Sensors! Lab

Sviluppo di tecnologie e metodologie innovative e modelli di raccolta dati, analisi e simulazione dell'interazione uomo-macchina-ambiente.

- **Wearable Sensors** e metodologie per il rilievo non intrusivo dei segnali associati al comportamento spontaneo del soggetto
- BCI e ausili innovativi
- **Responsive environments** e sviluppo del paradigma del **comfort ambientale attivo**
- Applicazioni di **'Ambient Intelligence**' in collaborazione con il Laboratorio di Domotica della Fondazione Politecnico di Milano.

La 'mission' del Laboratorio



Contesto e Key-Words:

<u>Scopi</u>: sviluppare tecnologie, metodi e strumenti per la detezione e registrazione ambientale di bio-segnali per ...

<u>Requisiti</u>: la registrazione di dati non intrusiva naturale e senza vincoli in ...

<u>Applicazioni</u>: ergonomia, medicina, sport, fitness, lavoro, domotica, 'oggetti intelligenti', telemonitoraggio, trasporto.

Il 'Concept'

Le attuali tecnologie permettono lo sviluppo di 'moody products', oggetti che possono modificare alcune loro caratteristiche in relazione a quelle dell'utente

Dati 'intimi', personali 'mis

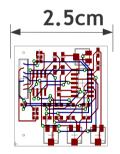
(es. misure bioelettriche che
identificano anche uno stato di salute)

E' fondamentale la possibilità di 'misurarne' lo stato spontaneo naturale

Contatto con l'utente, trasparente e inconsapevole per garantire la naturalità del comportamento

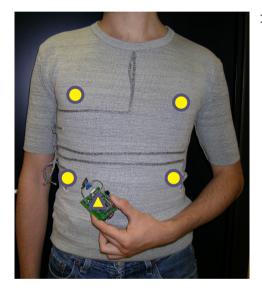
Monitoraggio 'non intrusivo'

Wearable sensors and computing


Gli indumenti rappresentano un mezzo importante e polifunzionale per realizzare questo scopo, integrandovi opportuni sensori che permettono la rilevazione dei parametri fisiologici di interesse.

Wearable sensors

- Sensori integrati per la rilevazione di biosegnali durante la vita quotidiana senza interferire né con il soggetto, né con la sua attività e che non richiedano una sua diretta e consapevole strumentazione o partecipazione
- µsistema esperto per il trattamento dei segnali e l'estrazione di parametri clinici di interesse
- Identificazione dello stato psico-fisico del soggetto
- Trasferimento dei dati all'unità di controllo/monitoraggio dello stato di salute
- Interazione con l'ambiente per il comfort o la sicurezza attivi


Stadio attuale di sviluppo dei sensori

Bio-segnale ...

... lo strumento

- 1) Attività Cardiaca \Rightarrow ECG (elettrodi integrati e dispositivo wearable)
 - ⇒ Cardiac Output (funzione meccanica del cuore) con dispositivo wearable device integrato nel modulo ECG

- 2) Respirazione
- ⇒ pletismografo o ECG derived breathing rate
- 3) Temperatura
- ⇒ termometro RF miniaturizzato
- 4) Altri parametri
- ⇒ Attività elettrodermica, sudorazione, movimento e caduta

I partner tecnologici

Il progetto si avvale della collaborazione scientificotecnologica di ST-Microelectronics - Advanced System Technology Group, che ha messo a disposizione un chip di prossima produzione per lo sviluppo dell'Hw di preprocesisng e tramissione RF Bluetooth

I tessuti sensorizzati si basano sulla tecnologia Tecnostan: Ageostan srl ha contribuito al progetto con lo studio sulla modalità di realizzazione delle magliette e la produzione dei prototipi funzionali.

Oggi il progetto è giunto alla fase di sperimentazione per la validazione finale del prodotto.

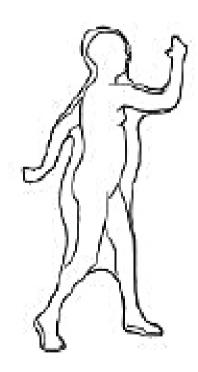
Design for wearability

Caratteristiche del tessuto & posizionamento ottimale dei sensori

Caratteristiche richieste all'indumento

- 1. Aderenza di elettrodi e contatti alla pelle
- 2. Minimo scivolamento tra tessuto e pelle
- 3. Comfort
- 4. Assenza di cattivi odori
- 5. Lavabilità e stirabilità garantita per periodi prolungati

Nuove metodologie:


- Necessità di creare nuovi paradigmi per l'analisi dei segnali biologici
- Modalità di utilizzo delle informazioni biologiche da parte dell'ambiente

Design for wearability

Movimento e percezione soggettiva delle proprie dimensioni

da: www.ices.cmu.edu

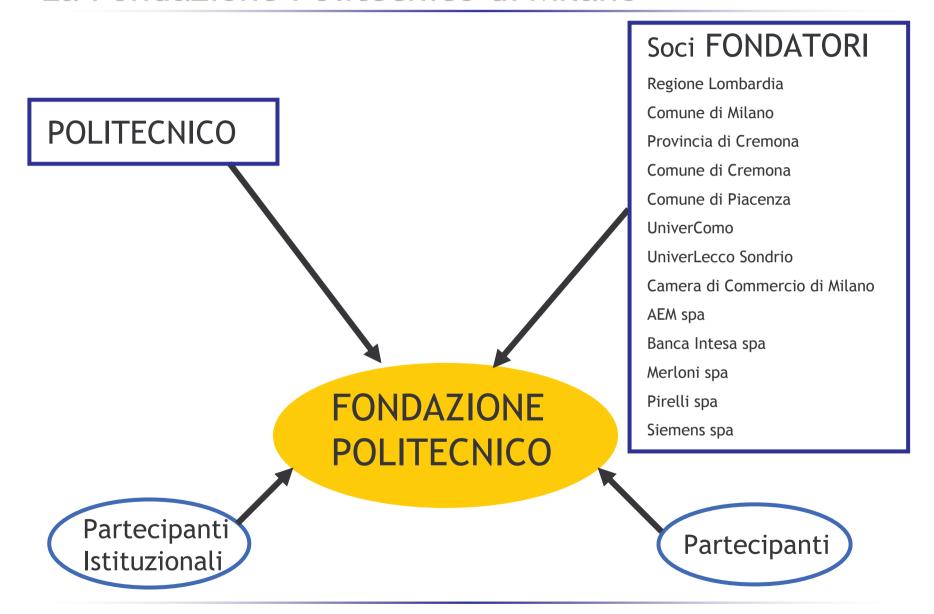
Aura di percezione (Gemperle et al. 1998)

Le applicazioni

- Monitoraggio clinico (es. di soggetti anziani e bambini)
- Valutazione funzionale (di soggetti in movimento e durante la guida, atleti, astronauti)
- Valutazione del livello di comfort e scambio di informazioni con l'ambiente

Un possibile scenario per la Public Protection

Scenari di intervento dove il monitoraggio costante dei parametri vitali è critico per salvare la vita dell'operatore di salvataggio e di chi è in pericolo:


- → vigili del fuoco
- → pattuglie di intervento
- miniera
- → subacquei

La Fondazione Politecnico di Milano

Il Laboratorio di Domotica

Obiettivo generale del laboratorio di ricerca sulla Domotica è supportare lo sviluppo dell'automazione ed informatizzazione dello spazio domestico in funzione di un concreto innalzamento delle condizioni di sicurezza e comfort psicofisico di tutte le fasce di utenza oltre che di una gestione ottimizzata di funzioni, impianti e consumi.

Il Lab nasce promosso da un'iniziativa congiunta con il **Gruppo Merloni**

Aree d'integrazione tecnologica

- → Area Tecnologie biomediche
- → Area sensoristica/microelettronica
- → Area comunicazione/trasmissione dati
- → Area software
- → Area design
- → Area ottimizzazione energetica
- → Area progettazione integrata

Le linee di sviluppo

- → Sensori-Interconnessione-Attuatori
- → Software e Intelligenza artificiale
- → Integrazione dei sistemi e progetto dell'impatto ambientale
- → L'energetica domestica
- → Ergonomia e Design
- → Normativa e standardizzazione

Ambient Intelligence e Domotica

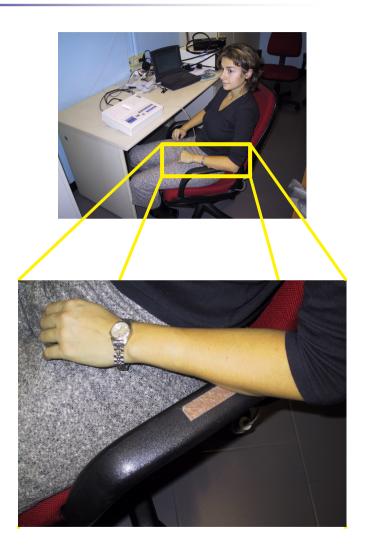
L'Ambient Intelligence

Una nuova visione sistemica e dinamica di uomo-ambienteprodotto-servizio.

Nuovi paradigmi per l'interazione uomo-ambiente

- ergonomia (User-centered design)
- wearable, embedded, integrated sensors
- disappearing computing
- interfaccia naturale/artificiale per una misura non intrusiva

Multidisciplinarità: l'approccio e la sfida

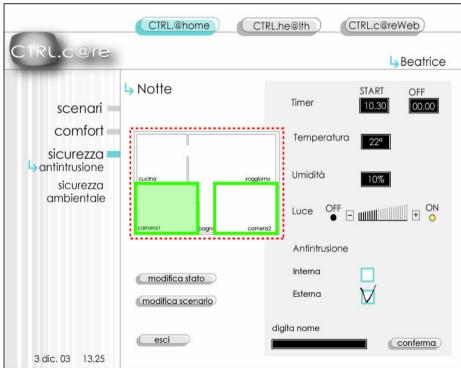


Tecnologie Biomediche e Domotica

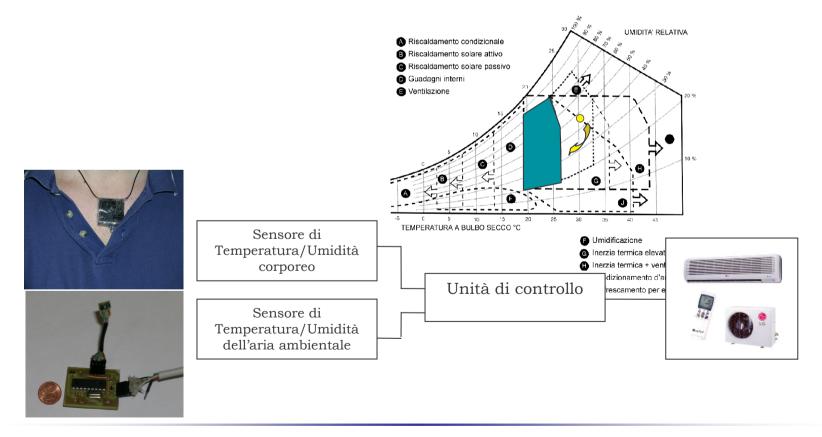
Sensori distribuiti e indossabili

Obiettivo è la trasparenza del processo di monitoraggio rispetto all'utente e al suo comportamento spontaneo

- elettrodi ambientali
- maglietta sensorizzata per ambienti sensoriali attivi



Un portale domestico che supporta funzioni di telemedicina, fitness, telecompagnia, gestione del comfort e della sicurezza



Applicazioni: Sistema di auto comfort termico

Sviluppo del paradigma del comfort attivo e dei responsive environments, e in particolare per il controllo automatico dei parametri termici dell'ambiente in relazione al comfort percepito dall'utente

→ Sviluppare un controllo dell'impianto di climatizzazione di una stanza orientato al comfort termico misurato/percepito;

Conclusioni

Lo sviluppo di materiali e fibre innovative e della corrispondente tecnologia tessile, rende oggi possibile la creazione di indumenti che al loro interno integrino sensori di varia natura, con molteplici applicazioni.

Molti sono i settori industriali ma soprattutto i servizi al cittadino che possono trarre vantaggio da questa tecnologia:

- servizi di cura e assistenza
- prevenzione e telemonitoraggio
- public protection
- attività sportive e fitness
- maternità, bambini e anziani

- ...

Ringraziamenti

Un grazie particolare a:

- Prof. A. Pedotti – direttore TBM Lab

Il team del WoWS! Lab e di Domotica:

- Ing. L. Piccini
- Ing. L. Maggi
- Ing. M. Pizzagalli

e a tutti coloro che a vario titolo e ruolo hanno contribuito al WoWS!Lab

GRAZIE PER L'ATTENZIONE

Contatti:

Ing. Giuseppe Andreoni

TBM Lab – Dip. di Bioingegneria – Politecnico di Milano Lab. di Domotica – Fondazione Politecnico di Milano Tel. 02 23999158 Fax 02 23999166 giuseppe.andreoni@polimi.it